Higher Institute of Engineering and Technology, New Minya

Electrical Engineering and Computers Engineering BSc.

Program

Department of Electrical Engineering and Computers Engineering

Course Specification

1- Basic Information

Code	Course Title				Bylaw
EEL 187	Electronic Lab (3)				2011
Program	Electrical Engineering and Computers Engineering BSc.			Category	Elective (Technology) course
Delivered by	Electrical Engineering and Computers Engineering Dept.			Prerequisite	Electronic Eng. Lab. EEL 122
Course Units	Lectures	-	hr.	Stage	Diploma
	Tutorials	-	hr.	Level	02 Elec.
	Practical	3	hr.	Semester	$2^{\text {nd }}$. Semester
	Total Units	1	Cr. h.	Academic Year	2022/2023
Approval Date	Program	Academic council		No. (46) 19/9/2022	
		Dept. council			9/2022
	Course	Academic council		No. (5)	16/1/2023
		Dept. council			1/2023

2- Course Aims

The main aim of this course is to conduct testing on trainers of advanced electronic system. This course is designed to qualify the graduates to be able to:

- Familiar with advanced electronic Lab.
- Familiar with basic construction and operation of op-amp.
- Employ op-amp circuits for basic technology.
- Familiar with basic construction and operation of IC 555 timer.
- Employ IC 555 timer circuits for basic technology.

3- Course Subject Area

A	B	C	D	E	F	G	
Humanities and Social Sciences	Mathematics and Basic Sciences	Basic Engineering Sciences	Applied Engineering and Design	Computer Applications and ICT	Projects and Practice	Discretionary Subjects	Total
			100%				$\mathbf{1 0 0 \%}$

4- Competencies of Learning Outcomes from the Course

Program competencies that the course contributes in achieving it

Course competencies in detail

 engineering problems by applying engineering fundamentals, basic science and mathematics, as appropriate to the EECE discipline.

B3 \quad Design and implement: elements, b3.1 modules, sub-systems or systems in electrical/electronic/digital engineering using technological and professional tools.
B4 Estimate and measure the performance of an electrical/electronic/digital system and circuit under specific input excitation, and evaluate its suitability for a specific

	application.	b 4.2
B5	$\begin{array}{l}\text { Adopt suitable national and international } \\ \text { standards and codes to: design, build, } \\ \text { operate, inspect and maintain } \\ \text { electrical/electronic/digital equipment, } \\ \text { systems and services. }\end{array}$	b 5.1
	$\begin{array}{l}\text { Basics of design and analyzing }\end{array}$	c 1.1

C1 $\begin{aligned} & \text { Basics of design and analyzing } \\ & \text { electrical and computer engineering }\end{aligned}$ systems, while considering the constraints of applying inappropriate technology and the needs of commercial risk evaluation.
a2.1
a2.3 \quad Be aware of terms of technical language and rules of writing reports related to operational amplifier familiarities, verification of op-amp characteristics, feedback op-amp, inverting and non-inverting op-amp, op-amp applications (comparator - summing ampl. - differentiator - integrator), oscillating and timing circuits (vibrators , astable, and monostable circuits), and timing integrated circuit IC 555. monostable circuits), and timing integrated circuit IC 555 . issues associated with operational amplifier, oscillating, and timing circuits applications.
Identify the standards, quality assurance systems, codes of practices, health and safety regulations, and environmental preservation precautions regarding operational amplifier, oscillating, and timing circuits.
Be aware of current production technologies of electronic products and current technologies of operational amplifier, inverting and non-inverting op-amp, op-amp applications (comparator - summing ampl. - differentiator - integrator), oscillating and timing circuits (vibrators , astable, and monostable circuits), and timing integrated circuit IC 555.
Recognize basic concepts of computer programming and techniques applied in computer communication networks related to operational amplifier applications, oscillating, and timing circuits. Create the required operational amplifier, oscillating, and timing circuits via utilizing various analytical tools, simulation techniques, measuring equipment, and proper software packages.

Use relevant laboratory equipment and analyze the results correctly to verify operational amplifier familiarities, op-amp characteristics, op-amp circuits, oscillating, and timing circuits.
Employ the appropriate specifications for operational amplifier, oscillating, and timing circuits.

Apply standards, quality assurance manuals, and codes for operational amplifier, oscillating, and timing circuits.
Deals with risk management at work and applying safety regulations relevant to operational amplifier, oscillating, and timing circuits technologies
Evaluate the performance of operational amplifier, oscillating, and timing circuits
c1.2 Evaluate, organize and utilize information and knowledge from different sources to construct a proper design or solution for operational amplifier, oscillating, and timing circuits.

c1.3 | | Identify principles of analyzing and designing of operational |
| :--- | :--- | amplifier, oscillating, and timing circuits, while considering the constraints of applying inappropriate technology and the needs of commercial risk evaluation.

5- Course Content

Operational amplifier familiarities - Verification of OP-amp. Characteristics - Feedback inverting and non-inverting op-amp - Op-amp applications: comparator amplifier, summing amplifier, differentiator and integrator. Oscillating and Timing circuits: vibrators, astable and monostable circuits - Timing integrated circuit IC555.

6- Course Topics / Timeline

Topic	No. of Weeks	
Topic (1)	Operational amplifier familiarities. Verification of OP-amp. Characteristics	Week 1
Topic (2)	Feedback inverting and non-inverting op-amp.	Weeks 2-3
Topic (3)	Op-amp applications: comparator amplifier.	Week 4
Topic (4)	Summing amplifier.	Week 5
Topic (5)	Differentiator and integrator.	Week 6
Topic (6)	Oscillating and Timing circuits: vibrators.	Week 7
Topic (7)	Astable circuit.	Week 8
Topic (8)	Monostable circuit.	Week 9
Topic (9)	Timing integrated circuit IC555.	Week 10

7- Course Topics / Competencies

Competencies	Course Topics								
	E		N	会	$\begin{aligned} & \frac{1}{6} \\ & 0 \\ & 0.0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Co } \\ & 0 \\ & 0.0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { E } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		O
a2.1	X	X	X	X	X	X	X	X	X
a2.2	X	X	X	X	X	X	X	X	X
a2.3			X	X	X		X	X	
a4.1	X	X	X	X	X	X	X	X	X
a4.2	X	X	X	X	X	X	X	X	X
b3.1	X	X	X	X	X	X	X	X	X
b4.1			X	X	X		X	X	
b4.2			X	X	X		X	X	
b5.1	X	X	X	X	X	X	X	X	X
b5.2	X	X	X	X	X	X	X	X	X
c1.1		X	X	X	X	X	X	X	X
c1.2				X	X	X	X	X	X
c1.3				X	X	X	X	X	X

8- Teaching and Learning Methods

Competencies	Teaching and Learning Methods												
	Hut	$\begin{aligned} & \text { n } \\ & .0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \tilde{0} \\ & .0 \\ & 0 \\ & 0 \\ & 0 \\ & 0.0 \\ & 0.0 \end{aligned}$			30 0 0 0 0 0 0 0 0 0					$\begin{aligned} & \text { no } \\ & \text { 悉 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		
a2.1	X						X			X	X		X
a2.2	X						X			X	X		X
a2.3	X						X			X	X		X
a4.1	X			X		X		X		X		X	X
a4.2	X			X		X		X		X		X	X
b3.1	X	X		X	X	X		X		X			X
b4.1	X		X	X	X			X		X	X	X	X
b4.2	X		X	X	X			X		X	X	X	X
b5.1	X			X	X		X			X	X	X	X
b5.2	X			X	X		X			X	X	X	X
c1.1	X	X	X		X			X		X	X	X	X
c1.2	X	X	X		X			X		X	X	X	X
c1.3	X	X	X		X			X		X	X	X	X

9- Assessment Methods

Competencies	Assessment Methods									
					会			$\begin{aligned} & \text { n } \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \text { N } \\ & \text { E } \\ & \text { d } \\ & \text { E } \end{aligned}$
a2.1	X		X	X	X	X	X	X		
a2.2	X		X	X	X	X	X	X		
a2.3	X		X	X	X	X	X	X		
a4.1	X		X	X						
a4.2	X		X	X						
b3.1	X		X	X	X	X				
b4.1	X	X	X	X		X	X	X		
b4.2	X	X	X	X		X	X	X		
b5.1		X	X	X		X	X	X		
b5.2		X	X	X		X	X	X		
c1.1	X	X	X	X		X	X			
c1.2	X	X	X	X		X	X			
c1.3	X	X	X	X		X	X			

10- Assessment Methods Weight

Assessment Method	Percentage
Final Exam (Lab Test + Theoretical Written Exam)	40%
Mid-term Exam (Lab Test + Theoretical Written Exam)	30%
Semester Work	30%
Total	$\mathbf{1 0 0} \%$

11- List of References

Course Notes	It is prepared by coordinator
Essential Books	$1-$ "Electronic devices", Thomas L. Floyd, 10 th by Pearson Edition, 2018, Publion Limited.
Recommended Books	1- "Microwave Engineering", David M. Pozar, 4 Published by John Wiley and Sons, Inc.
Periodicals, Websites, etc.	IEEE Explorer

We certify that all of the information required to deliver this course is contained in the above specification and will be implemented.

Course Coordinator

Name: Dr. Mohammed Morad Salama
Signature: Dr. Mohernmed More salama
Date: 1/1/2023

Head of Electrical Engineering and Computers Engineering Department
Name: Dr. Omar Makram Kame
Signature: \qquad Date: 1/1/2023

